Blog Archives
You Want To Be A Consultant? Rule #2: Watch Your Back
Note: On hundreds of projects I have found the great majority of customers to be highly professional and a pleasure to work with. This post addresses the few exceptions that are encountered from time to time. -EW
Several years ago I was hired by an electronics firm to determine the root cause of a circuit problem that was holding up production. I spoke to the young engineer who had created the design, analyzed his circuit, reviewed the test data, and concluded that he had made a design error. (For what it’s worth, most of my troubleshooting investigations have determined that the root cause of circuit problems is insufficient design margin, which is why I always recommend that every circuit be validated with a good WCA.) I provided a solution and that was that. Or so I thought.
I later received a tip from a colleague that the young engineer I had worked with had generated a memo that stated that my conclusions were wrong, and that he had found the “true cause” of the problem. Apparently the engineer felt threatened by the fact that he had designed a circuit with a problem that he could not identify, and decided to lie about the facts behind my back. Based on the tip, I provided a follow-up memo that corrected his inaccuracies. This caused the young engineer some serious embarrassment, but I think he earned it.
I felt bad nonetheless, because the first rule of a consultant is, in my opinion, to be sure that the client’s team perceives you as non-threatening. The consultant is not there to act superior, or to gloat, or to point out the perceived faults of the team. (Hint: such consultants create more damage than they’re worth; fire them.) The consultant’s job is simply to lend a hand.
Furthermore, there is no reason for the consultant to feel superior. Yes, the consultant must have design expertise and problem-solving skills, but more valuable is the fact that the consultant provides an outside and objective viewpoint, unpolluted by the daily hassles (sometimes political) that impede the team. In many cases the team is very close to finding the problem, but they are unable to do so because they are behind schedule, overworked, tired, and distracted by the varied and hectic demands of the typical engineering workplace. This is why it makes good sense to hire a consultant: it’s just not possible for a team to be completely objective about their own efforts, particularly when they’re under a lot of pressure.
Yet, despite the tactful and low-key assistance of a modest consultant, there will still be those cases where the defensiveness of some individuals cannot be disarmed. Untruthful memos, passive-aggressive unhelpfulness, “I thought of it before the consultant did” posturing, and other immature behavior will sometimes be encountered. If you want to be a consultant, then you will need to deal with such unpleasantness forthrightly but tactfully. It’s just part of the job.
Want To Learn Proper Worst Case Analysis Basics? See Our Latest Article at How2Power.com
A new Design Master article, “Use Worst-Case Analysis Tool To Efficiently Validate Your Designs,” is now available in the latest issue of How2Power.com.
Is Your Circuit Simulator Just A Pretty Face? Five Reasons Why Simulations Are Not Sufficient For Design Validation
Jerry Twomey recently pointed out some pitfalls with math-based circuit analysis (“Academic Simplifications Produce Meaningless Equations,” 13 June 2012, Electronic Design.com.)
I agree with the general sentiments of Mr. Twomey, but would like to point out that there is a simple solution to avoiding the pitfalls he mentions: develop equations from component data sheets, not from academic simplifications. This is straightforward and will be discussed further in a future post.
Also, it should be noted that simulations are not some miracle cure-all elixir. Indeed, simulators are also math-based creatures: SPICE and its cousins simply grind out numerical solutions to the multitude of hidden equations that are buried beneath their pretty graphical interfaces.
So what’s the problem with simulators? A lot. For example,
1. Because simulator math is hidden behind the user interface, simulators don’t promote engineering analysis (thinking). To the contrary, they promote lazy tweak-and-tune tinkering.
2. Because simulator component models are typically very complex, the interactions between important variables are usually obscure, if not downright unfathomable. Obscurity does not promote engineering understanding.
3. Simulator results typically do not provide insight into important sensitivities. For example, can your simulator tell you how sensitive your power supply’s thermal stability is to the Rds(on) of the switching Mosfet, including the effects of thermal feedback?
4. A simulation “run” is not an analysis, but is instead a virtual prototype test. Yes, it’s better to check out crappy designs with a simulator rather than wasting time and money on building and testing crappy hardware. So simulators have their place, particularly when checking out initial design concepts. Eventually, however, hardware testing is required to verify that the simulator models were correct. And you will still need to do a worst case math analysis to determine performance limits, and to confirm that desired performance will be maintained in the presence of tolerances and aging.
- Proper Design Validation = Testing/Simulations + Analysis
5. Simulators don’t really do worst case analysis. Yes, you can use a simulator to implement a bunch of Monte Carlo runs, but valid results requires (a) identification of all of the important parameters (such as Rds(on)), (b) assignment of the appropriate distributions to those parameters (such distributions are typically not available), and (c) the generation of enough runs to catch errors out in the tails of the overall resultant distribution (and how many runs should you do? Hmmm…).
- Monte Carlo is not a crystal ball. It only shows you the production performance you will get if all of your assumptions were correct, and if you did enough runs.
- The knowledge required to determine the number of runs requires an exhaustive study of the circuit’s parameters, distributions, and interrelationships (not practical), or a knowledge of the limits of performance.
- But if you know the limits of performance, then why do you need a Monte Carlo analysis? You don’t. You can skip it altogether and go directly to a math-based Worst Case Analysis.
For further insights into math-based Worst Case Analysis versus simulations, please see “Design MasterTM: A Straightforward No-Nonsense Approach to Design Validation.”
-Ed Walker
Bulletin: Design Master Analyzer Now Available
The Design Master™ Analyzer (DMA) is a simple fill-in-the-blanks quick and easy worst case analysis tool. DMA is based on expert templates, allowing powerful results to be quickly generated by less experienced engineers.
DMA is designed to be more easily used by iPad and other compact devices.
The Design Master Analyzer is targeted at specific applications with a very simple and easy-to-use format. If you’re an engineering director or project manager, simply provide copies of specific DMA applications to your staff for quick and efficient “fill in the blanks” analyses and receive design validation in minutes rather than weeks.
Although DMA files are useable as provided and are securely locked, a Professional Edition “master” owner can edit or create DMA templates. The DMA engine can also be used to convert any existing Design Master file into a DMA fill-in-the-blanks format. Please inquire for pricing for the DMA engine.
To order please click here.
Bulletin: Design Master Cloud Version Now Available
The Cloud version of the Design Mastertm Professional Edition is now available:
- Use Design Master whenever you need it from wherever you are, on almost any platform including PCs, Macs, iPads, etc.
- Order only the number of days you need.
- The latest version is always available online; no upgrades are ever required.
For more information or to order, please click here.
Used worldwide, our Design Master™ software provides a fully integrated set of analysis tools, including worst case solutions to design equations, probability estimates of any out-of-spec conditions, sensitivities, and optimized values for design centering.
4th Qtr 2011
(c) 2011 Design/Analysis Consultants, Inc.
Newsletter content may be copied in whole or part if attribution
to DACI and any referenced source is prominently displayed with the copied material
This Issue: NEWS BITE: Rising Sun Gets Snagged On Mountain And Breaks Apart! / DESIGN MASTER TIP: Minimizing Calculation Time / ANALYSIS: Why Do A Worst Case Analysis? / TECH TIP: Nice Overview of Considerations for External Components for Switching Regulators / MORE UNINTENDED CONSEQUENCES: Wind Power Kills Endangered Species / ANALYSIS QUIZ: Adjustable 3-Terminal Regulator Output Tolerance
NEWS BITE: Rising Sun Gets Snagged On Mountain And Breaks Apart!
Motorists cautioned to avoid area due to high temperatures.
“First planet with two suns reported found”
15 Sep 2011, NASA and World Science
Do an initial run and check sensitivities. Thereafter set the variables to their respective worst case values to reduce calc time until the design is finalized. Then set the variables back to their full range for a final calculation to obtain probabilities for risk assessment.
ANALYSIS: Why Do A Worst Case Analysis?

In the Bay Area, when activists in the 1980s demanded a cleaner planet, the state responded with the Altamont Pass Wind Resource Area. The state-approved wind farm, built with federal tax credits, kills 4,700 birds annually, including 1,300 raptors, among them 70 golden eagles…
“There’s a big, big hypocrisy here,” Sue Hammer of Tehachapi Wildlife Rehab in Kern County said. “If I shoot an eagle, it’s a $10,000 fine and/or a vacation of one to five years in a federal pen of my choice.”
From “Energy in America: Dead Birds Unintended Consequence of Wind Power Development” by William La Jeunesse, 16 Aug 2011, FoxNews.com
ANALYSIS QUIZ: Adjustable 3-Terminal Regulator Output Tolerance
An LM317T regulator with 36V input is set for 24V nominal output, using 1/8W 1% 100ppm thick film resistors (10K and 549 ohms). The regulator must deliver 1A and operate from 0 to 50 C for 10,000 hours.
Q: What will be the approximate worst case output tolerance? (Answer will be posted in the next newsletter.)
3rd Qtr 2011
(c) 2011 Design/Analysis Consultants, Inc.
Newsletter content may be copied in whole or part if attribution
to DACI and any referenced source is prominently displayed with the copied material
This Issue: NEWS BITE: Mutant Singing Cantaloup Wins Karaoke Contest! / MORE UNINTENDED CONSEQUENCES: Hands-Free Faucets / DESIGN MASTER TIP: AC Rectifier Worst Case Analysis Made Easy / ART MEETS ENGINEERING: The Invisible Man / STATISTICAL DESIGN PITFALLS: Monte Carlo Is Not Worst Case Analysis
NEWS BITE: Mutant Singing Cantaloup Wins Karaoke Contest!
“Freaky Robot Mouth Learns to Sing,”
Evan Ackerman, 13 July 2011, IEEE Spectrum
MORE UNINTENDED CONSEQUENCES: Hands-Free Faucets Harbor More Germs Than Standard Faucets
Details here.
DESIGN MASTER™ TIP: AC Rectifier Circuit Worst Case Analysis Made Easy
In our previous Newsletter we provided a pretty good estimate for the ripple current for the bulk capacitor in an AC rectifier circuit. But what if you have a large volume product and you need a full worst case analysis to ensure high reliability, but one that is not overly pessimistic so that you can minimize cost? Design Master can help you achieve that optimum balance.
As readers are aware, we’ve started to release some DMeXpert™ “fill in the blank” WCA templates to make the design engineer’s life a bit easier. One of these is our AC Bridge Rectifier Analysis (ACBR1 $19) which allows the designer to determine all of the worst case component stresses within a minute or two. The analysis includes the effects of source impedance Rs (such as transformer secondary winding ohms), which if present can be used to reduce capacitor ripple current requirements, hence reduce capacitor cost.
As those who have studied AC rectifier circuits are aware, this seemingly simple circuit has resisted for decades all of the attempts to generate a single-formula solution, until recently, which we’ve included in ACBR1. Based on Keng Wu’s article, “Analyzing Full-Wave Rectifiers With Capacitor Filters” (1 Jan 2010, Power Electronics Technology), Wu’s formula allows a straightforward circuit solution, greatly reducing computational time. So with ACBR1 you can just fill in the blanks, click Calculate, and let Design Master do the rest.
ART MEETS ENGINEERING: The Invisible Man
Engineers who work for the military are sometimes required to design clothing, equipment, or even entire shelters to be “invisible” to various detection means. Chinese artist Liu Bolin has a gift for applying such camouflage in a non-technological way, as seen below. Hint: If you can’t spot Liu, look for his shoes first.
From “The Invisible Man: Dragon Series,” Vurdlak, 28 June 2011, http://www.moillusions.com
Some more fascinating photos here and here.
STATISTICAL DESIGN PITFALLS: Monte Carlo Is Not Worst Case Analysis
A lot of folks like to let a simulator crank out “worst case” results, using Monte Carlo statistical methods. But as we’ve explained previously (“Design Master vs Extreme Value, RSS, Monte Carlo, & Simulation,” and “Design Master vs Monte Carlo“), this can be not only time consuming, but risky. For example, Monte Carlo can easily miss small but significant errors (see example below). In addition, if the Monte Carlo runs are improperly implemented (such as including temperature or other dynamic variables) you will likely obtain wildly inaccurate results.
The Design Master Advantage
Instead of statistical sampling, Design Master uses a top-down approach to achieve safer and more cost-effective results, by (a) detecting the extreme limits of performance, and then (b) using a proprietary probability algorithm to estimate how often those results will exceed the specification limits.
EXAMPLE
Design Master results at 2 samples/variable versus
Monte Carlo at 10,000 samples/variable, for the gain of an 8-variable filter
As can be seen, the Monte Carlo analysis detected a minimum of 8.42 versus the actual minimum of 7.86, a 7% error, and a maximum of 16.0 versus the actual maximum of 18.8, a 15% error.
Announcing The Design Master Expert Assistant
Announcing the Design Master Expert Assistant with the release of Design MasterTM V8
The DMeXpert™ (DMX) Edition guides the user with pop-up instructions, component selection lists, standard part values, important formulas, and a variety of other tips that are activated when entering a Formula cell. It’s like having a design/analysis expert at your side.
DMX is ideal for the design engineer or project manager who needs quick and efficient “fill in the blanks” design validation in minutes rather than weeks. Based on DACI’s thorough and practical worst case analysis plus (WCA+) methodology, DMX uses expertly designed templates to facilitate analysis of a variety of standard circuits.
In addition to its standalone function, DMX is an integral part of the just-released Version 8 of Design Master’s Professional Edition. DMX facilitates efficient organization and selection of circuit and part files, and also provides easy access to an organized array of tutorials and DMeXpert tips.
Circuit templates, part files, and help files can be accessed and edited by using the Professional Edition. This allows an organization’s design experts to use the Professional Edition to create DMX templates tailored to the needs of the company.
For more information, please click here.