Blog Archives

Metal Oxide Varistor (MOV) DMX Analysis File Released

Metal Oxide Varistor (MOV) DMX Worst Case Analysis File
MOV1 $12.50

(DMX files are available free to Design Master™ Professional Edition users who purchased or upgraded DM not more than one year prior to the DMX file release date.)

The MOV analysis determines whether a Metal Oxide Varistor transient voltage suppressor will (a) survive a specified surge voltage or current, (b) clamp the surge below a specified voltage limit, (c) not clamp the normal operating voltage, and (d) survive a specified number of surges. MOVS are typically rated with 8x20us current waveforms, and (just to be confusing) 10x1000us energy waveforms. MOVs also have a lifetime (number of allowable surges) that depends on peak current, pulse width, and temperature. To complicate things further, MOV clamping voltages are a nonlinear function of surge current. To help make the design engineer’s job a little easier, this analysis contains adjustment formulas for all of these factors. Also provides standard surge waveform requirements and helpful hints.

DMeXpert™ (DMX) files guide the user with pop-up instructions, component selection lists, standard part values, important formulas, and a variety of other tips that are activated when entering a Formula cell. It’s like having a design/analysis expert at your side.

Transient Voltage Suppressor (TVS) DMX Analysis File Released

Transient Voltage Suppressor (TVS) with Optional Steering Diode DMX Worst Case Analysis File
TVS1 $12.50
.

(DMX files are available free to Design Master™ Professional Edition users who purchased or upgraded DM not more than one year prior to the DMX file release date.)

The Transient Voltage Suppressor analysis determines whether a TVS avalanche diode and optional steering diode will (a) survive a specified surge voltage or current, (b) clamp the surge below a specified voltage limit, and (c) not clamp the normal operating voltage. Good for any TVS diode and steering diode; just fill in the blanks using data sheet values, and get an answer in a few seconds. TVS diodes are typically rated with 10x1000us current waveforms. Steering diodes are typically rated with line frequency half-sine current waveforms. When the applied surge has a different waveform, however, the TVS and steering diode ratings must be adjusted accordingly. In addition, the ratings must also be adjusted for pulse width and temperature. To help make the design engineer’s job a little easier, this analysis contains adjustment formulas for all of these factors. Also provides standard surge waveform requirements and helpful hints.

DMeXpert™ (DMX) files guide the user with pop-up instructions, component selection lists, standard part values, important formulas, and a variety of other tips that are activated when entering a Formula cell. It’s like having a design/analysis expert at your side.