Category Archives: Thermal

Malaysian Flight 370: Lithium Battery Fire Is A Reasonable Hypothesis

777The cargo fire hypothesized by Canadian pilot Chris Goodfellow to explain the disappearance of Malaysian Flight 370 (see “Malaysian Flight 370: Canadian pilot’s analysis goes viral“) is a reasonable one.

According to Malaysian officials, the plane was carrying 440 pounds of lithium batteries. Lithium batteries, sitting inert (not being charged or discharged), were identified as the cause of the fire and resultant 2010 crash of a UPS 747 flight at Dubai. Ironically, even though “improper storage” in that case was determined to be the cause of the fire, I have never read any explanation of how improper storage can ignite a lithium battery. It appears more likely that lithium batteries, under certain conditions not completely understood (e.g. a combination of battery construction and chemistry, heat, vibration, and/or shock) can spontaneously ignite, albeit very rarely.

In addition to pilot Goodfellow’s comments, an added interesting point is that Flight 370 also gained very high altitude shortly after communications ceased. It could be that the pilots, upon becoming aware of the fire at that time, tried to quickly elevate the plane to quell the fire by starving it of oxygen. This might have been an excellent maneuver for most fires, but lithium batteries, once ignited, create their own oxygen and will continue to burn at high altitude.

Bottom Line: Until the cause of the disappearance of Flight 370 is positively determined, the possibility of a lithium battery fire is a reasonable hypothesis, and worth investigating.

-Ed Walker


Boeing’s Flaming Battery Fix: Time to Slow Down?

787dreamlinerJust a quick note for those following this fascinating story.

Michael Sinnett, Boeing’s chief project engineer, said in a recent briefing that “Boeing is redesigning its batteries to ensure a fire isn’t possible. Among the new features will be a fire-resistant stainless steel case that will prevent oxygen from reaching the cells so fire can’t erupt.” (from “NTSB Contradicts Boeing Claim of No Fire in 787 Battery,” by Alan Levin , 15 Mar 2013 Bloomberg).

The problem with that statement is that once a lithium battery is heated sufficiently, it releases its own oxygen to fuel continued burning/explosion. That’s why lithium fires are extremely difficult to extinguish, and why an outer case, although it may keep a fire from spreading, will not prevent a fire from erupting.

-Ed Walker

Boeing’s Flaming Lithium Batteries: Was This A Risk Worth Taking?

boeing_batteryIn DACI’s 1st Quarter 2012 newsletter I predicted that a catastrophic safety event would eventually occur due to lithium batteries (please see “Li-Ion Battery Pack Hazards and our Psychic Prediction“). The recent fires in the initial flights of the new Boeing Dreamliner have come close to fulfilling that prophecy.

From “Detecting Lithium-Ion Cell Internal Faults In Real Time” (Celina Mikolajczak, John Harmon, Kevin White, Quinn Horn, and Ming Wu, in the Mar 1, 2010 issue of Power Electronics Technology) it is known that internal cell faults in lithium batteries can lead to thermal runaway, subsequently resulting in fires and/or explosions. Therefore the question arises: do the Boeing lithium batteries have an advanced internal construction that prevents cell faults, or mitigates thermal runaway in the event of a fault? If not, the Boeing team or vendor responsible for the battery system design is in big, big, trouble.

Although deficiencies in basic battery chemistry and/or construction appear to offer the best root cause hypothesis for the fires, there are also other possible factors. For example, it has been reported that perhaps the charging system malfunctioned, causing the batteries to overheat. However, a properly designed charger for an aircraft application would have fail-safe protection, preventing an overcharge. Plus, it was also reported that charging sensors did not detect an overvoltage. Although these factors sound reassuring, they are not sufficient to eliminate the charger from consideration. For example, one can hypothesize a charging waveform that contains spurious high frequency oscillations that create high rms charging currents. This would not necessarily result in overvoltage, but could result in overheating.

It is also possible that battery “cell defects” are nothing more than cell imbalances that vary according to production tolerances. In other words, the lithium battery, by its very nature, tends towards thermal runaway unless the internal cells are very tightly matched. This sensitivity would become more pronounced with a higher number of cells and higher mass, which would explain why no explosions have occurred in  small button-style batteries, but do occur in the larger batteries.

There are other scenarios, including the thorny possibility that some combination of conditions conspired to create the failure. And, of course, the root cause may be highly intermittent, making detection extremely difficult. Such hypotheses are undoubtedly being examined by the Boing engineers. I wish them well, and hope that they are allowed to perform their work calmly, methodically, and thoroughly.

Note: Because it may take quite a long time to conclusively establish a root cause, I would suggest that Boeing immediately begin planning to retrofit the lithium system with one containing battery types that have not shown the proclivity to explode; e.g. nickel metal-hydride, or sealed lead acid gel. Heavier, yes, but in this case safety and the economic timeline indicate that it would be wise to be prepared with a retrofit design.

(For some brief guidelines on design failure crisis management, please see Scenario #6: “Coping with Design Panic,” in The Design Analysis Handbook, Appendix A, “How to Survive an Engineering Project.”

-Ed Walker

1st Qtr 2012

(c) 2012 Design/Analysis Consultants, Inc.
Newsletter content may be copied in whole or part if attribution
to DACI and any referenced source is prominently displayed with the copied material

This Issue: NEWS BITE: Creepy Swarming Electronic Insects Are Real! / GOVERNMENT FOOLISHNESS and Incandescent Bulbs / WORST CASE ANALYSIS and the Fukushima Nuclear Plant Meltdown / RISK ASSESSMENT and Lithium Battery Explosions / ANALYSIS QUIZ: Answer To Last Quarter’s Question / DESIGN MASTER 8.2 UPGRADE if you’ve had troubling generating WCA reports on a Win7 PC

NEWS BITE: Creepy Swarming Electronic Insects Are Real!

GOVERNMENT FOOLISHNESS: Incandescent Bulbs Banned? No Problem, Just Buy A Heat Ball

From “Upset about Big Brother’s Ban on Incandescent Bulbs? Buy a Heatball!
by Selwyn Duke in the 30 Dec 2011 issue of American Thinker

For earlier Newsletter comments on the absurdity of banning incandescent bulbs, please see “Unintended Consequences: Nanny Engineering” in the 2nd Qtr 2011 issue.

WORST CASE ANALYSIS: What We Learned From Fukushima – Again

“Japan is not a technically backward country  … Its nuclear power plants were designed and built with an acute consciousness of extreme earthquake dangers.

“So how is it, despite that sophistication, awareness, and preparedness, that the Fukushima crisis has nonetheless exceeded worst-case thinking? Here, the story is reminiscent of Three Mile Island and Chernobyl, and the message seems to be the same: Worst-case scenario builders consistently underestimate the statistical probability of separate bad things happening simultaneously, as the result of the same underlying causes. [Emphasis added]
Japan Nuclear Accident Worse Than Worst, Again” by Bill Sweet, 12 Mar 2011, Energywise

RISK ASSESSMENT: Li-Ion Battery Pack Hazards and our Psychic Prediction

“Internal cell faults continue to lead to thermal runaway failures in Li-Ion battery packs used in the field. Though these events are rare, the proliferation of Li-ion-powered consumer electronics has increased the risk for an event occurring on an aircraft, or at a similarly inauspicious location or time … At present there is no [battery] pack-protection circuitry in commercial use that is designed to continuously monitor the cells for the symptoms of a latent incipient internal cell fault before such a fault causes thermal runaway.”
Detecting Lithium-Ion Cell Internal Faults In Real Time” by Celina Mikolajczak, John Harmon, Kevin White, Quinn Horn, and Ming Wu, in the Mar 1, 2010 issue of Power Electronics Technology

Even though there have been several fires and a few folks have been injured or killed due to exploding lithium batteries, we predict that the risk will be tolerated until a catastrophic explosion occurs. This will be  followed by the usual screaming headlines belatedly warning of the dangers, hind-sight experts suddenly popping up on TV, hand-wringing congressional investigations, and finally, heavy-handed and grossly over-reactive governmental regulatory responses.

ANALYSIS QUIZ (Answer from Last Issue): Adjustable 3-Terminal Regulator Output Tolerance

An LM317T regulator with 36V input is set for 24V nominal output, using 1/8W 1% 100ppm thick film resistors (10K and 549 ohms). The regulator must deliver 1A and operate from 0 to 50 C for 10,000 hours.

Q: What will be the approximate worst case output tolerance?

-2/+2%        -4/+5%         -7/+6%         -6/+11%         -9/+15%

A: -9/+15%

Surprised? You might be if you only consider initial tolerances, and don’t factor in the effects of temperature and aging. Here are the normalized sensitivities, which gives one a better sense of the significant error contributors:

DESIGN MASTER™ 8.2 UPDATE: WCA Report Generator Bug Corrected

To facilitate the efficient creation of professional worst case analysis reports, Design Master includes an automated Word document report generator, based on Microsoft Office automation technology. We’ve recently had a few Win7 users notify us that the report function is not operable on their systems. Although Design Master has been tested on other Win7 systems with no problems, variations in Win7 system speed appear to prevent the report generator from functioning properly in some cases. Design Master Rev 8.2 allows more tolerance for speed variances, which has corrected the reported issues.